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Abstract
The effect of the dc magnetic field on the damping behaviour of a stress-relieved Ni sample is
examined under low frequency free torsional vibrations. High damping capacity, reaching
40% fractional energy dissipation per full period was detected in stages of high magnetization,
beyond 90% from technical saturation. The damping of magnetic origin is attributed to the
vibration-induced movement of the still existing non-180◦ domain walls, through the irregular
energy landscape generated by their interaction with the structure defects. The overall energy
loss per full period of vibration is evaluated as the statistical addition of contributions from local
dissipative processes consisting in forward and reverse Barkhausen jumps, triggered by the
periodic stress and either favoured or suppressed by the field, depending on its strength.
Predictions were obtained in good agreement with the experiment.

1. Introduction

Internal friction (IF) is the traditional term for the capacity
of materials to attenuate vibrations; in solids this property is
attributed to a large palette of microstructural mechanisms,
among which point defect relaxation, dislocation relaxation,
grain boundary relaxation, anelastic relaxation during phase
transformations or thermo-elastic relaxation are widely
studied [1, 2]. As a quantitative expression of the damping
capacity, the fractional energy loss per full period of
vibration [3, 4]:

D = �W

We
(1.1)

is commonly used; here, �W is the energy lost per cycle at
the expense of the elastic energy We stored at maximum strain.
Alternatively, the reciprocal Q−1 = D/2π of the quality factor
(by analogy with ac circuits), the relative width at half power
of the resonance curve, or the logarithmic decrement of the
amplitude are sometimes preferred [2, 5].

Magnetostrictive materials exhibit a specific contribution
to the damping, called ‘magnetomechanical damping’ (MMD)
which originates in the dissipative processes that accompany
the periodic changes (either microscopic or macroscopic)
induced in their magnetic state by the applied stress [4–6]. It
was found that in addition to the common vibration conditions

like amplitude, frequency, temperature or loading mode,
etc, the energy �Wm lost per cycle via such changes also
depends on the strength and direction of the applied magnetic
field [4, 6, 7a, 8]. As �Wm vanishes at magnetic saturation, in
which case only a non-magnetic background damping, (Dsat),
is observed, the MMD coefficient:

Dm = �Wm

We
(1.2)

is currently evaluated by subtracting Dsat from the as-measured
total damping. It was found that the MMD is practically
frequency independent up to the kHz range, and that this is in
a direct relation to a hysteresis effect observed in the stress–
strain cycle of these materials, well below the conventional
limits for plastic deformation [9–11]; the resulting area of the
stress–strain loop was interpreted as the volume density of
�Wm [7a, 12, 13, 14]. This damping mechanism is attributed
to the vibration-driven irreversible jumps (Barkhausen jumps)
of non-180◦ DWs, as they move through the irregular energy
landscape generated by their interaction with structure defects
(such as dislocations, slip traces, grain boundaries, non-
magnetic inclusions, etc, [15, 16]). As a general feature,
the MMD due to hysteresis depends on the amplitude of
vibration [3, 17–21] and on the strength of the applied
magnetic field [12, 14, 22], Dm showing a maximum in
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Figure 1. Hysteresis loops of the sample (a) in the native state and (b) after structural relaxation; the driving field Hz was applied
longitudinally.

both cases. In addition, forced vibration experiments have
shown that the amplitude dependence of the MMD exhibits
hysteresis [4, 8]: below a ‘critical’ amplitude value (close
to that at which Dm is maximum), the damping depends on
whether the amplitude is increased or decreased, always being
stronger in the latter case. Once a cycle (from zero to a
preset maximum strain and back to zero) is completed for
the first time, the hysteresis disappears, but it reappears if the
amplitude is increased beyond the previous range. The effect
was attributed to the fact that as the amplitude is increased,
an increasing number of non-180◦ DWs are driven behind
higher and higher internal stress peaks, thus settling back into
some more stable sites [4, 23]. Since such ‘trapping sites’
are expected more in regions of higher density of structure
defects, the movement of the DWs here will involve forward
and reverse Barkhausen jumps, until the amplitude of vibration
falls down below some local threshold-like values.

The irregular energy landscape through which the DW
moves is often described by a random profile function.
Sometimes called ‘potential function’ [24], the concept was
introduced in the literature in various (in fact, equivalent)
forms. Thus, in terms of the ‘difference in the energy density
of the dipoles on the two sides of the DW’, Becker and
Dörring [7b] interpreted the effect of the internal stresses on the
initial susceptibility, while Bates [25] discussed the magnetic
hysteresis. Alternatively, Néel [26] and other authors [27, 28]
used the ‘DW energy gradient’ to express the DW contributions
to the linear and quadratic Rayleigh terms. The influence of the
internal stresses on the DW stability is sometimes discussed
in terms of a ‘restoring pressure’ [29], or a ‘random pinning
field’ [30–32]. Hrianca [12] examined the motion of a 90◦ DW
when activated by the stress. By establishing, in Becker’s and
Dörring’s terms, the energetic conditions under which periodic
torsion triggers forward and reverse Barkhausen jumps of
such a DW in the presence of a magnetic field, he evaluated
statistically the number of these local events and derived an
expression for the amplitude and field dependence of the
MMD. In the same view, Smith and Birchak [17] proposed a
statistical model based on the concept of ‘effective stress’, by
which the action of both the stress and magnetic field on the
DWs are taken into account.

The influence of the dc magnetic field on the damping
capacity of stress-relieved polycrystalline Ni is examined in
the present paper under low frequency torsional vibrations in
free decay; a strong effect of the field was detected. To some

extent, our MMD data are consistent with the predictions of
both Hrianca’s and Smith’s and Birchack’s models, but aiming
at a better description of the observed facts a new approach,
in which some assumptions used by Hrianca were adopted
in an equivalent form, is proposed. An attempt to evaluate
the overall energy loss �Wm by adding contributions from
cyclic processes consisting of vibration-triggered forward and
reverse Barkhausen jumps of the non-180◦ DWs is now made,
and in this view an expression for the amount δWm of energy
dissipated during such a local process is derived. Earlier
versions of the model (not including this latter feature) were
discussed elsewhere [33, 34].

2. Experiment

Magnetization and damping measurements were carried out
on a 12 cm long cylindrical sample from a polycrystalline Ni
layer of thickness d = 45 μm and radius r = 0.6 mm. The
layer was electrodeposited on a Cu wire, using a Watts bath
containing NiSO4 and NiCl2. In order to remove the inherent
internal stresses, the sample was annealed for 2 h at 300 ◦C
in silicon oil. Both measurements were performed via PC-
assisted analog-to-digital conversion and data acquisition; a
12 bit resolution card (NuDAQ-8112HG-ADLink Tech.) was
used.

The magnetic behaviour was examined under quasi-static
conditions, in slowly varying (24 s period) triangular waveform
longitudinal fields, by means of a conventional induction hys-
teresis graph using chopper-stabilized operational amplifiers
(ICL7650-Intersil) for signal processing. The magnetic field
was generated by a 30 cm long coil with a field uniformity
better than 98% within ±10.5 cm from the midpoint. In fig-
ure 1 the magnetic behaviour of the sample in the as-deposited
state and subsequent to annealing are shown: the drastic re-
duction in coercivity (from 11.4 kA m−1 to 127 A m−1) con-
firms structural relaxation (via dislocation recovery and grain
growth [35]) to a considerable extent.

An important increase in the damping capacity resulted
from annealing, from MMD hardly separable from the non-
magnetic background in the native state, to Dm values
two orders of magnitude greater, now amplitude and field
dependent. The IF was measured at frequencies close to
1 Hz under torsional vibrations in free decay, by means of an
inverted pendulum using a tungsten wire, 0.1 mm in diameter,
as elastic suspension. The angular deflection of the pendulum
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Figure 2. Sequences from torsional vibration records at constant longitudinal dc magnetic field Hz , increasing from (a) to (d); the sample is in
the annealed state. The grey background is the vibrogram recorded at technical saturation (in a field Hz = 30.2 kA m−1).

was converted into a voltage by means of a Hall effect-based
transducer with a resolution better than 6 × 10−4 rad; details
are given elsewhere [36]. During vibrations a dc magnetic field
was applied longitudinally in equal steps of 508 A m−1; the
field strength was maintained constant until motion extinction
and then in situ ac demagnetization was performed prior to the
next vibration initiation. Vibrograms were recorded as the time
evolution of the torsional strain (γ ) in the median shell of the
layer; in figure 2 a synthetic picture, showing the strong effect
of the magnetic field on the damping is given.

The damping capacity was evaluated within the conven-
tional low-amplitude approximation We ∝ �2 (here, � is the
amplitude of the strain), by full rectification of the as-recorded
vibrogram envelopes. An apparent damping coefficient, Da, in-
cluding contributions from both the Ni layer and the substrate
Cu wire primarily resulted (the small amount of energy stored
in the elastic suspension wire, not exceeding 1% from We, was
neglected). From the obtained family of curves Da(�)Hz , the
amplitude dependence of Dm at constant field strength was
evaluated as:

Dm(�)Hz = k
[
Da(�)Hz − Da,sat

]
, (2.1)

where Da,sat ≈ 1.6 × 10−3 is the damping at magnetic
saturation (found to be independent of the amplitude of
vibration) and

k = 1 + [
(GNi/GCu) (1 + d/r)4 − 1

]−1
(2.2)

is a correction factor (the calculation gives k = 2.64) required
by the fact that the denominator We in equation (1.2) should
exclusively be the elastic energy stored in the Ni layer, and
GNi and GCu are the shear moduli of the two metals. From
sectioning the generated curves Dm(�)Hz the family of curves
Dm(Hz)� was obtained; the results are plotted in figure 3.

As a general feature, Dm exhibits broad maxima versus
Hz, which is commonly expected. Less common is the fact that

Figure 3. Magnetic field dependence of the MMD as exhibited by
the sample in the stress-relieved state at different values of the
amplitude of vibration (the interpolation lines are eye guides).
The field was applied along the longitudinal axis.

the observed damping maxima are considerably high, reaching
40% fractional energy loss per full period. As the amplitude
of vibration increases, these maxima progressively increase
(the explored range of maximum strain was limited to the
ascending side of the amplitude dependence of the MMD) and
shift towards lower values of the field strength. In weak fields
the MMD coefficient is very small, comparable to Dsat in order
of magnitude.

3. Discussion

When compared to other data reported on polycrystalline Ni
wires [4, 12], the shift of the Dm maxima is somewhat more
evident, presumably due to the fact that the vibrational strain
is practically uniform throughout the cross section of our
relatively thin-walled sample. Vanishing MMD as detected
in weak fields was also reported with annealed low carbon
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steel [4]; substantial internal stress relief was achieved in both
cases. In addition, it follows from figure 3 that the major
damping effects occur in fields that drive the sample beyond
90% from technical saturation, as the examined quasi-static
magnetic behaviour shows.

3.1. The field required for maximum damping

The fact that the maximum MMD requires high magnetization
is neither singular, nor restricted to Ni [13, 22, 37]. According
to the standard picture of the bulk magnetization process, in
the field range of high magnetization the DW movements
have already been completed [25b, 27c], which suggests that
ferromagnets approaching technical saturation tend, if not to
a single domain stage, (which is the case of small crystals
like grains, thin films, whiskers), at least to a configuration
consisting in a limited number of large volumes aligned (or
close) to the field direction [38]. Correspondingly, most of
the DWs must have vanished by this stage, and as far as
the MMD is attributed to the MMH, the observed high field
positions of the maximum damping do not appear as expected.
Yet, this may have a simple explanation if we assume that
in such stages of high magnetization there still exist some
‘non-aligned islands’ divided into domains inside which the
dipoles point in directions other than parallel to the field,
but energetically equivalent (quasi-equivalent), which makes
the separating DWs practically insensitive to the field. Such
equivalent directions may be either normal to the field, or other
than normal, but symmetric (quasi-symmetric) with respect to
this; 180◦ DWs are expected in the former case (which, clearly,
is improbable in the high magnetization stages) and non-180◦
DWs in the latter. But if the material is magnetostrictive,
the above orientational equivalence will be affected inside the
domains separated by non-180◦ DWs, if a stress is applied
along a direction which is other than parallel or normal to the
field. Indeed, such a stress will cause changes of different
amounts in the energy of the dipoles from the two sides of
these walls and, consequently, those domains in which the
dipoles’ energy decreases will tend to expand at the expense
of their less favoured neighbours. In other words, some non-
180◦ DWs still existing in stages of high magnetization are
almost insensitive to the field, but they may be sensitive to
the stress if it is suitably applied. When referring to our Ni
layer, such DWs are expected to be either transverse (quasi-
transverse) or parallel (quasi-parallel) to the cylinder axis; from
magnetostatic reasons, the magnetization component normal
to the DW is continuous across the wall in the former case,
and zero in the latter [27b]. Once the sample is driven
into such a configuration by a dc field and then subjected to
torsion, the energy of the dipoles from the two sides of these
DWs will change and, since the local equivalent of torsion is
shear, having tension and compression acting in quadrature
as principal stress components, these changes will be close
in value but opposite in sign. As a consequence, the DWs
will change their position of equilibrium, and inside the as-
swept volume the transverse component of the magnetization
will change sign. The motion of the DWs will be forth and
back if the torsion is periodic and, as far as Barkhausen jumps

are concerned, energy dissipation will be produced. Evidence
of such a mechanically-driven motion of the non-180◦ DW
has been reported as the ‘dynamic Matteucci effect’ [40]
with a Ni layer of shape and thermal history similar to
ours’: when a longitudinal dc magnetic field was applied
during forced torsional vibrations, an ac voltage having the
same period as the strain was detected across its ends. As
the amplitude of the strain was increased, the amplitude of
the signal also increased and gradually changed waveform
from sine-like to narrow alternating pulses. Like in our
damping experiment, the maximum effect required relatively
strong fields, nearly exceeding the field range in which the
conventional Barkhausen effect was detected (as well known,
it is the irreversible movement of the DWs, mostly of 180◦
type, that has the dominant contribution to the steep part of the
magnetization curve or of the hysteresis loop branches). Again
like in our experiment, the field position of the maximum effect
shifted towards lower values as the amplitude of the vibrations
was increased. Clearly, the ‘Matteucci voltage’ was induced
by the circular magnetic flux reversals, as a cumulative effect
of the transverse component reversals of the dipoles moments,
inside the volumes swept by some non-180◦ DWs, moving
under the action of the periodic torsion. As the amplitude
of the strain was increased, the character of this movement
changed from reversible to irreversible, the signal increased
in amplitude and its waveform turned into a succession of
envelopes of the induced alternating Barkhausen avalanches.

3.2. Theory

In order to draw a somewhat more definite picture of the
observed effect of the magnetic field on the damping, consider
first a non-180◦ DW, moving through a magnetostrictive
ferromagnet containing structure defects. Let ξ be the DW
abscissa along the local direction of motion (assumed normal
to the wall) and let U(ξ) be the potential function associated
with its interaction with the structure defects. Since these
defects are distributed at random, the potential function is
expected to exhibit a random profile. In the absence of
any external forces, the DW positions of stable (metastable)
equilibrium correspond to the local minima of U(ξ), and if the
wall eventually leaves such a position, a ‘restoring force’:

Fr(ξ) = −〈dU/dξ 〉w (3.1)

will drive it back; here, 〈· · ·〉w denotes mediation over the
DW thickness, which will be assumed small compared to the
distance between two successive minima of U(ξ). The stable
equilibrium conditions Fr(ξ) = 0; dFr/dξ < 0, will be altered
if external forces (e.g. a magnetic field or a stress) are applied,
and the DW will move until their effect is counterbalanced by
the generated restoring force; depending on both the direction
and magnitude of these forces and, also, on the pinning field
profile described by Fr(ξ), the motion may be either reversible
or irreversible.

However, since the DW is a topological object (a transition
zone of magnetic moments rotation) rather than a moving
body, it is more likely that its stability should be related to the
coupling between the magnetic dipoles and the internal stress
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Figure 4. Plots of the potential function describing the interaction of a non-180◦ DW with the structure defects (a) and of the corresponding
pressure function (b).

pattern generated by the structure defects. In this sense, we
note that the stable positions of the DW will be those in which
neither of the dipoles’ orientations in the adjacent domains is
energetically preferred [7b]; indeed, any eventual displacement
from such a position will cause an increase of energy inside the
as-swept volume. This suggests that the required conditions
for the stability of the DW may be examined in terms of the
difference [7b, 25a]:

u(ξ) = wb
int(ξ)− wf

int(ξ), (3.2)

between the contributions wb
int(ξ), and wf

int(ξ), of internal
origin to the energy density of the magnetic dipoles, as they
belong to the domain behind the wall and to that in front of
the wall, respectively. Since the anisotropy energy is the same
in both domains, these contributions are primarily attributed
to the internal stresses. In these terms, the DW positions of
stable equilibrium in the absence of any external forces will
correspond to the following conditions:

u(ξ) = 0; du/dξ > 0. (3.3)

Clearly, a generic correspondence may be established
between the two functions, U(ξ) and u(ξ). Indeed, the latter
may be regarded as a direct measure of the ‘external pressure’
required to maintain a non-180◦ DW in equilibrium at position
ξ , against the restoring pressure Fr(ξ)/Aw (here, Aw is the area
of the wall). Accordingly, we may write:

u(ξ) = A−1
w 〈dU/dξ〉w. (3.4)

Possible profiles of the potential function and of the
derived ‘pressure function’, similar to those considered
in [27a, 41, 42] are shown in figure 4; here, at points like A1,
A′

2, A′′
2, A′

3, A′′
3, etc, conditions (3.3) hold.

If a stress σ and a magnetic field H are applied along
directions other than parallel or normal to the bisectrix of
the DW angle, the generated contributions wb

ext(ξ, σ ,H) and
wf

ext(ξ, σ ,H) to the energy density of the magnetic dipoles
will differ from each other. Accordingly, the conditions for the
stable equilibrium of the DW will be rewritten as:

�w (ξ, σ ,H) = 0; ∂�w/∂ξ > 0, (3.5)

where

�w (ξ, σ ,H) = [
wb

int(ξ)+wb
ext (ξ, σ ,H)

]

− [
wf

int(ξ)+wf
ext(ξ, σ ,H)

]
. (3.6)

Figure 5. Possible orientations of non-180◦ DWs in strong
longitudinal fields Hz : (a) quasi-transverse, (b) longitudinal.

In particular, if the ferromagnet is (like our Ni sample) a
hollow cylinder of thickness small compared to the radius, the
applied torsion will produce a strain (γ ) which is practically
uniform, and if a solenoid-type coil is used to generate a
longitudinal magnetic field Hz, this will also be uniform.
Accordingly, conditions (3.5) take the simple form:

u(ξ) = cγ γ + cz Hz; du/dξ > 0 (3.7)

where coefficients cγ and cz depend on the material constants
and magnetic dipoles orientations. If α is the DW angle and
∓β are the deviations of the MS vectors from the symmetric
±α/2 directions with respect to the field in the adjacent
domains (figure 5), these coefficients are:

cγ = −3λG sinα cos(2β); cz = 2μ0 MS sin(α/2) sinβ,
(3.8)

where λ is the magnetostriction constant, G is the shear
modulus and μ0 is the vacuum permeability.

As far as concerns our Ni sample, the axes of easy
magnetization belong to the 〈111〉 family of crystal directions,
which means that the DW angle α is either 70◦ 30′ or 109◦ 30′,
but for energetic reasons a DW of the latter type is significantly
less probable than the former in the Hz range favouring high
MMD. Accordingly, we shall ignore the blunt angle DWs in
what follows.

In addition, it is known that Ni exhibits negative
magnetostriction. Then, if α and β are considered positive
quantities, both cγ > 0 and cz > 0 (note that cγ < 0
corresponds to β > 45◦, a value also unlikely in the field
range of interest). For convenience, we shall complete this sign
convention by associating γ > 0 with clockwise torsion and
Hz > 0 to the DW moving towards an increasing abscissa.
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Figure 6. The path of the representative point associated with the
motion of a non-180◦ DW inside the trapping site 2 in figure 4
(the index 2 was omitted for simplicity).

It is common practice [25a, 27, 41, 42] to discuss the
movement of the DW through the real crystal in direct
relation with that of a point (the ‘representative point’) along
the position-dependent graph of the DW energy or energy
gradient. Following Becker’s description [7b], also used by
Hrianca [12], this may be done in our terms by examining
the motion of the representative point on the graph of the
pressure function u(ξ). Depending on the combined effect of
the applied field and stress, this point either moves reversibly
along an ascending graph side, or jumps from an as-reached
extremum to the nearest accessible side; an illustration is given
in figure 6, in which a DW captured in the trapping site 2 in
figure 4 is assumed.

Let, in the absence of any external forces, the DW in stable
equilibrium be in position ξA′ (the representative point in A′).
If a dc magnetic field of strength 0 < Hz < c−1

z u(ξC′ ) is now
applied, the DW moves to, say, ξB ′ (the representative point
shifts from A′ to B ′, on the same side of the graph) and if
periodic torsion is superimposed, the DW begins to move back
and forth about this new position of equilibrium. Depending on
the amplitude of the strain, the motion will be either reversible
or irreversible. In terms of the local extrema umax = u(ξC′ ) and
umin = u(ξC′′ ) of the pressure function u(ξ), the path of the
DW is a short segment about position ξB ′ (the representative
point moves reversibly up and down about point B ′) if the
amplitude � of the strain is less than

γ(rev) = c−1
γ min {cz Hz − umin, umax − cz Hz} , (3.9a)

but it extends considerably (say, between ξE ′ and ξE ′′ ) if the
amplitude is increased beyond

γ(irr) = c−1
γ max {cz Hz − umin, umax − cz Hz} . (3.9b)

The extension is primarily due to the forward (ξC′ → ξD′′ )

and reverse (ξC′′ → ξD′ ) Barkhausen jumps now triggered
(the representative point follows the cyclic path B ′ → C ′ →
D′′ → E ′′ → B ′′ → C ′′ → E ′ → B ′). The DW eventually
performs one of these two jumps if γ(rev) < � < γ(irr), then
moving reversibly about one of the two zero-strain positions
ξB ′ and ξB ′′ ; clearly, an effective contribution to the damping
requires � > γ(irr).

In order to express the energetic conditions according
to which a cyclic dissipative process runs under given field
and amplitude conditions, we shall use the positive quantities
introduced by Hrianca [12]:

ϕ = umax; ψ = umax − umin (3.10a)

and:
ρ = cγ �; ηz = cz Hz, (3.10b)

as ‘internal’ and ‘external’ variables, respectively. In these
terms, the above conditions are:

ηz � ϕ � ρ + ηz; ψ − ϕ � ρ − ηz. (3.11)

During such a process an amount δWm of energy will be
dissipated, and this may be estimated as:

δWm = Aw

∮
u(ξ) dξ, (3.12)

where the integration path is the contour D′ → C ′ →
D′′ → C ′′ → D′, delimited by the endpoints of the two
Barkhausen jumps. Approximating this contour to a trapezium,
the calculation yields:

δWm ≈ κAwψ
2 (3.13)

where κ is a factor related to the profile of u(ξ); in terms of
the average slopes sD′C′ , sC′C′′ and sC′′ D′′ of the graph segments
enclosed by the integration contour, κ = 0.5/sD′C′ −1/sC′C′′ +
0.5/sC′′ D′′ .

In order to evaluate �Wm , we shall extend the calculus
to the whole ferromagnet (in particular to our Ni layer) on
the basis of the following general assumptions: (i) the local
dissipative events activated by the torsional vibrations may
be approximated by simple processes running in compliance
with conditions of the form (3.11), and (ii) these processes are
activated in a number which is large enough to treat �Wm as a
statistical addition of their contributions δWm .

To what extent assumption (i) holds remains an open
question, but some arguments may still be put forward. Thus,
on one hand, we shall note that in the explored range of
moderate amplitudes of the vibrations, low Dm values were
detected both in weak and in strong fields, which corresponds
in our terms to ηz 
 ρ and to ηz � ρ, respectively. Thus
it is reasonable to expect that amplitude and field conditions
favouring strong MMD correspond to variables ηz and ρ

falling into the same order of magnitude, and the calculation
shows that this requires small angles β , not exceeding a few
degrees. In this sense, the following example is suggestive:
given G = G110 = 7.6 × 1010 N m−2 [43], λS = λ111 =
2.7 × 10−5, μ0MS = 0.61 T [44] as material constants,
and � = 4.9 × 10−5, Hz = 4 kA m−1 as experimental
conditions leading to Dm close to the maximum detected,
the ratio ρ/ηz ranging within reasonable limits, say, 1 and
3 (in figure 5 this ratio is close to 2), corresponds to 2◦ <

β < 5◦ 30′, in agreement with the previous interpretation
(section 3.1) of the strong fields positions of the Dm maxima.
Indeed, the MMD here is attributed to the irreversible jumps
of the non-180◦ DWs separating some domains remaining
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unaligned to the field, inside which the magnetization slightly
deviates from the ±α/2 symmetric directions with respect to
the field. On the other hand, if all the four variables, both
internal (ϕ,ψ) and external (ρ, ηz), take comparable values
in such a process (again, figure 5 is illustrative), the estimated
order of magnitude of the internal stresses having generated
restoring pressure peaks comparable with the local extrema of
u(ξ) is 10 MPa, which is the residual stress level reported
in annealed Ni [4]. With regard to assumption (ii), if the
MMD is due to such processes, their expected number (Np)

is of the order of 105 in our experiment, a number sufficiently
large to make a statistical approach acceptable. This number
results from comparing the amount δWm,av ∼ 10−11 J of
energy dissipated in the course of an ‘average process’ with
the overall loss per full period �Wm ∼ 10−6 J evaluated
in our sample in the range of high MMD. In defining the
above average process, the following reasonable values were
assumed: a DW ∼ 25 μm × 100 μm in size, performing
∼10 μm long Barkhausen jumps (thus, sweeping a volume
δV(irr),av ∼ 2.5×10−14 m3) inside a trapping site where a peak-
to-peak fluctuation ψav ∼ 400 J m−3 in the restoring pressure
was generated by a ∼10 MPa internal stress directed at 45◦
with respect to the normal to the wall; the total volume swept
by the DWs per full period is then estimated as the product
NpδV(irr),av. Clearly, as far as the major damping effects
require stages of high magnetization, this volume should not
exceed a small fraction of the volume of our Ni layer, and
since the calculation leads to a value ∼3% for this fraction,
the above-estimated Np appears as a reasonable number. In
addition, since sweeping out a magnetic domain is not the
consequence of a single Barkhausen event, a somewhat larger
value should correspond to the volume fraction of the non-
aligned domains. Thus, if the volume fraction of these domains
is, say ∼20% and if the separating DWs are like those in
figure 5 (i.e. of 70◦ 30′ and quasi-transverse or longitudinal),
the estimated bulk magnetization is ∼96% from saturation, a
value in good agreement with experiment.

In agreement with assumptions (i) and (ii), a pair (ϕ,ψ)
of internal variables will be associated with each of the existing
trapping sites. Since u(ξ) is a random profile function, these
variables will be regarded as statistically independent and,
expressing the space fluctuations of the same quantity, it is
natural to expect that they obey similar distribution laws.
Accordingly, the associated distribution functions f (ϕ) and
f (ψ) will be assumed of the same analytic form (up to a
scaling factor). In order to identify the processes contributing
to the MMD, we shall take into account the fact that only a
small number of trapping sites contain DWs, and also that a
DW has to perform a certain number of Barkhausen jumps to
completely sweep out a magnetic domain. In other words, the
DW has to overcome a certain number of ‘pinning barriers’
while crossing, and a direct measure of the barrier heights
is provided in our description by the local maxima of the
pressure function u(ξ). The higher such a barrier is, the
more likely it will stop the moving DW, and in this sense, a
probability function p(ϕ), increasing with the argument, will
be introduced as a measure of this stopping capability. Since
trapping sites always contain barriers, p(ϕ) may be regarded
as expressing their expected ‘degree of occupation’.

With these considerations, we shall evaluate �Wm by
integrating elementary quantities of the form:

dWm(ϕ,ψ) = NwδWm p(ϕ) f (ϕ) f (ψ) dψ dϕ, (3.14)

between the limits resulting from conditions (3.11); here
Nw is the number of the walls. The calculation will be
considerably simplified if the individual process-quantities Aw

and κ are averaged to some ‘effective values’, Aw,eff and κeff,
respectively. Adopting this approximation, we may write:

�Wm(ρ, ηz) = Nwκeff Aw,eff I (ρ, ηz) (3.15)

with

I (ρ, ηz ) =
∫ ρ+ηz

ηz

p(ϕ) f (ϕ)
∫ ρ−ηz+ϕ

0
ψ2 f (ψ) dψ dϕ.

(3.16)
As long as variables ρ and ηz still depend (via coefficients

cγ and cz) on α and β , integration will not automatically lead
to the aimed amplitude and field dependence of the damping.
In order to clarify the role of these two angles, we first note
that as regards α, a decrease of only a few degrees from the
original 70◦ 30′ value (via vector rotations) is expected in the
Hz range related to significant MMD. It follows then from
the first relation (3.8) that the coefficient cγ remains almost
constant, in which case ρ is a ‘true’ external variable. On
the other hand, if β is restricted to small values, the second
relation (3.8) reveals that a dispersion of several degrees of this
angle will only affect the coefficient cz by a factor of the order
of unity. Then, if the influence of this factor is mediated over a
numeric range of the same order of magnitude, i.e. if the double
integral (3.16) is replaced with:

Iε(ρ, ηz) = 1

ε

∫ (1+ε)ηz

ηz

I (ρ, τ ) dτ ; 0 � ε � 1, (3.17)

within a reasonable approximation ηz may also be regarded as
a true external variable.

Numeric evaluation of �Wm requires known values for
Nw, Aw,eff and κeff, as well as known analytic forms for
p(ϕ), f (ϕ), and f (ψ), which involves full examination (or at
least throughout a representative volume) of both the magnetic
domain pattern and internal stress distribution. Since such
a task is hardly possible, we shall limit our calculation
to qualitative predictions, based on suitable analytic forms,
consistent with the structural state of the sample, for the
above functions. Accordingly, the remaining question is to
what extent the ratio Iε(ρ, ηz)/ρ

2 reproduces the dependence
Dm(�, H ). Having this end in view, we recall the fact that
the drastic reduction in coercivity subsequent to annealing
provides a direct confirmation of a substantial structure defects
relaxation in our Ni layer. It is, then, reasonable to expect that
the more severe a still remaining defect is, the less probable it
is, and keeping in mind the physical meaning of the pressure
function u(ξ), the internal variables ϕ and ψ should obey
the same rule. Correspondingly, forms decreasing with the
argument are expected for f (ϕ) and f (ψ), and in this sense
we shall consider the Gaussian half normal [44]:

f (x) = 2 (π 〈x〉)−1 exp
[
− (√

π 〈x〉)−2
x2

]
;

x = ϕ,ψ > 0 (3.18)

7
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as a possible choice meeting this requirement; here, 〈x〉 is the
mean.

Concerning the ‘probability of occupation’ p(ϕ), we shall
adopt the Gauss cumulative form:

p(ϕ) = 0.5{1+erf[υ(ϕ/ϕ0−1)]}; ϕ, ϕ0, υ > 0 (3.19)

where the scaling factor ϕ0 corresponds to the height of a
pinning barrier having a 50% chance to retain a DW. Clearly,
a reasonable value of the shape factor υ should correspond to
a vanishing probability of occupation at ϕ = 0, a condition
satisfactorily fulfilled for, say υ > 2; indeed, υ = 2 leads
to p(0) = 0.0023, υ = 3 to p(0) = 1.1 × 10−5, υ = 4 to
p(0) = 7.7 × 10−9, etc.

A numerical calculation based on the analytic forms (3.18)
and (3.19) still requires known values for the means 〈ϕ〉 and
〈ψ〉, as well as known ranges for variables ϕ,ψ, ηz and ρ.
The difficulty is avoided by introducing some dimensionless
variables, and a convenient way to make the substitution is
provided by the fact that, as definition (3.10a) suggest, the
following relation:

〈ψ〉 = 2〈ϕ〉 (3.20)

should hold. Accordingly, we shall introduce the new
(‘reduced’) variables as:

ς = ϕ/(
√
π〈ψ〉); ζ = ψ/(

√
π〈ψ〉) (3.21)

and:

g = ρ/(
√
π〈ψ〉); hz = ηz/(

√
π〈ψ〉), (3.22)

In these terms, the distribution functions (3.18) and the
probability of occupation (3.19) take the form:

f (ς) = (4/
√
π) exp(−4ς2);

f (ζ ) = (2/
√
π) exp(−ζ 2); ς, ζ > 0

(3.23)

and

p(ς) = 0.5{1 + erf[υ(ς/ς0 − 1)]}; ς0, ς, υ > 0,
(3.24)

where ς0 is the correspondent of ϕ0. Consequently,
integrals (3.16) and (3.17) will be rewritten as:

I (g, hz) =
∫ g+hz

hz

p(ς) f (ς)
∫ g−hz+u

0
ζ 2 f (ζ ) dζ dς, (3.25)

and

Iε(g, hz) = ε−1
∫ (1+ε)hz

hz

I (g, q) dq; 0 � ε � 1.

(3.26)
With these considerations, we shall regard dm(g, hz) =

g−2 Iε(g, hz) as a representation of Dm(�, Hz). In this sense,
an example is given in figure 7, in which the family of curves
dm(hz)g are plotted using the set of parameters: υ = 9/2,
ς0 = 3/2 and ε = 1/2.

When these curves are compared with the family of
experimental curves Dm(Hz)� in figure 3, a good similarity
may be observed. But apart from this ‘graphical’ agreement,

Figure 7. Predicted MMD dependence on the dc magnetic field at
constant amplitude of vibration; the values of dm are given in relative
units (dm/dm,max).

additional arguments supporting the validity of the model may
be put forward. Thus, the choice for the set of parameters
used in the calculation of the theoretical curves is justified
as follows: ε = 1/2 corresponds to a dispersion of the DW
orientations within reasonable limits (3◦ � β � 4◦ 30′) and
ς0 = 3/2 to ϕ0 = 3

√
π〈ϕ〉. The latter value is consistent

with a limited population of the pinning barriers; indeed, this
implies ϕ0 > 〈ϕ〉, but not ϕ0 � 〈ϕ〉, since the latter condition
‘sends’ the non-180◦ DWs towards such high barriers over
which vibrations of moderate amplitudes, as in our experiment,
could hardly activate Barkhausen jumps. As concerns the
shape factor υ, the value 9/2 corresponds to a probability of
occupation showing a reasonable rise, from 1.7% for ς = 1,
to 98% for ς = 2. In addition, if the ratio cγ �max/cz Hz,max

is evaluated using values close to the original DW angle for
α (i.e. 70◦ 30′), small angles β and amplitude and field ranges
like those in figure 3, this should match the ratio gmax/hz,max ≈
0.52 as results from figure 7: within reasonable approximation
this condition is fulfilled (e.g. for β = 4◦, �max = 4.9 × 10−5

and Hz,max = 9.6 kA m−1, one finds cγ �max/cz Hz,max ≈
0.59).

4. Conclusions

The influence of the dc magnetic field on the magnetome-
chanical damping in a stress-relieved cylindrical layer of poly-
crystalline Ni was examined under low frequency torsional
vibrations in free decay. High damping, reaching 40% frac-
tional energy dissipation per full period, was detected in stages
of high magnetization, approaching 90% from technical sat-
uration. The effect is attributed to the forward and reverse
Barkhausen jumps (either favoured or inhibited by the field,
depending on its strength) of some non-180◦ DWs, as they
move, under the action of the vibrational stress, through the
irregular energy landscape generated by their interaction with
the still existing structure defects. This energy landscape is
described by a DW position-dependent, random profile poten-
tial function U(ξ), from which a restoring force Fr(ξ), acting
on the DW when leaving its equilibrium position, is derived.

8
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The difference u(ξ) between the energy densities of the mag-
netic dipoles from the two sides of the wall is regarded as a
direct measure of the external pressure exerted by a magnetic
field or a stress (or by both) against the restoring pressure,
Fr(ξ)/Aw, required to maintain a DW of area Aw in a given
position, other than of non-perturbed stable equilibrium. The
conditions under which a non-180◦ DW performs forward and
reverse Barkhausen jumps activated by the periodic torsion in
the presence of a dc magnetic field are derived in terms of the
local extrema of u(ξ). An expression is derived in these terms
for the energy δWm dissipated in such a cyclic process, and the
overall loss per full period �Wm is then evaluated as an addi-
tion of such contributions. In this view, statistically distributed
space fluctuations of u(ξ) are assumed and a probability of oc-
cupation is introduced in order to account for the way in which
the trapping sites existing in the energy landscape are popu-
lated with DWs. Considering analytic forms consistent with
the structural state of the sample for the distribution and proba-
bility functions, qualitative predictions in good agreement with
the experimental results were obtained.
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Néel L 1943 Cahiers Phys. 13 1
[27a] Chikazumi S 1963 Physics of Magnetism (New York: Wiley)

p 286
[27b] Chikazumi S 1963 Physics of Magnetism (New York: Wiley)

p 199
[27c] Chikazumi S 1963 Physics of Magnetism (New York: Wiley)

p 246
[28] Kleman M 1982 Magnetism of Metals and Alloys

ed M Cyrot (Amsterdam: North-Holland) p 516
[29] Tahara V and Sugeno T 1973 Phys. Status Solidi b 55 385
[30] Bertotti G, Basso V and Durin G 1996 J. Appl. Phys. 79 5764
[31] Mills A C, Hess F M and Weissman M B 2002 Phys. Rev. B

66 140409(R)
[32] Dante L, Durin G, Magni A and Zapperi A 2002 Phys. Rev. B

65 144441
[33] Ercuta A and Mihalca I 2002 Deffect Diffus. Forum 203–205

269
[34] Ercuta A, Mihalca I, Chiriac H and Borza F 2002 J. Opt. Adv.

Mater. 4 361
[35] Lloyd J C and Smith R S 1962 Can. J. Phys. 40 454
[36] Ercuta A and Mihalca I 2002 J. Phys. D: Appl. Phys. 35 2902
[37] Atalay S and Squire P T 1991 J. Magn. Magn. Mater. 101 47
[38] Beatrice C, Fiorillo F, Asti G, Solzi M and Sarzi

Sartori S 2003 J. Magn. Magn. Mater. 254/255 149
[39] Rothenstein B F and Policec A 1965 J. Appl. Phys. 36 1808
[40] Kneller E 1962 Ferromagnetismus (Berlin: Springer) p 366
[41] Mayergoyz I D 2003 Mathematical Models of Hysteresis and

Their Applications (Amsterdam: Elsevier) p 295
[42] Kikuchi Y 1969 Ultrasonic Transducers ed Y Kikuchi

(Tokyo: Corona) p 49
[43] Bozorth R M 1959 Ferromagnetism (Princeton, NJ:

Van Nostrand) p 270
[44] McMichael R D, Swartzendruber L J and Bennet L H 1996

J. Appl. Phys. 73 5848

9

http://dx.doi.org/10.1063/1.1714457
http://dx.doi.org/10.1088/0022-3727/5/10/320
http://dx.doi.org/10.1063/1.341757
http://dx.doi.org/10.1016/S0925-8388(00)00940-3
http://dx.doi.org/10.1007/BF01333112
http://dx.doi.org/10.1007/BF01326007
http://dx.doi.org/10.1002/andp.19484370505
http://dx.doi.org/10.1063/1.1709176
http://dx.doi.org/10.1002/andp.19664720502
http://dx.doi.org/10.1063/1.1721708
http://dx.doi.org/10.1063/1.1452217
http://dx.doi.org/10.1016/0304-8853(81)90010-X
http://dx.doi.org/10.1016/0378-4363(75)90056-X
http://dx.doi.org/10.1063/1.1656551
http://dx.doi.org/10.1063/1.1657370
http://dx.doi.org/10.1063/1.1659417
http://dx.doi.org/10.1103/PhysRev.59.1005
http://dx.doi.org/10.1002/pssb.2220450128
http://dx.doi.org/10.1063/1.1661245
http://dx.doi.org/10.1016/S0304-8853(00)00104-9
http://dx.doi.org/10.1002/pssa.2210510111
http://dx.doi.org/10.1002/pssb.2220550140
http://dx.doi.org/10.1063/1.362181
http://dx.doi.org/10.1103/PhysRevB.66.140409
http://dx.doi.org/10.1103/PhysRevB.65.144441
http://dx.doi.org/10.1088/0022-3727/35/22/303
http://dx.doi.org/10.1016/0304-8853(91)90674-Y
http://dx.doi.org/10.1016/S0304-8853(02)00811-9
http://dx.doi.org/10.1063/1.1714356
http://dx.doi.org/10.1063/1.353547

	1. Introduction
	2. Experiment
	3. Discussion
	3.1. The field required for maximum damping
	3.2. Theory

	4. Conclusions
	References

